Building and Packaging Modern C++




Piotr Gaczkowski

https://github.com/DoomHammer | ¥ @doomhammerng

https://doomhammer.info



https://github.com/DoomHammer
https://twitter.com/doomhammerng
https://doomhammer.info/

Adrian Ostrowski

https://github.com/aostrowski | YWaadr ostrowski

s habana

An Intel Company



https://github.com/aostrowski
https://twitter.com/adr_ostrowski

A e e bl

A

J4n

gy L

I

15, TN ETIAY I




CMake




CMake - installation

e system package managers, e. g. apt install cmake




CMake - installation

e system package managers, e. g. apt install cmake
e brew install cmake




CMake - installation

e system package managers, e. g. apt install cmake
e brew install cmake
e pip install cmake>=3.21




CMake - installation

system package managers, e. g. apt install cmake
brew install cmake

pip install cmake>=3.21
conan install -g virtualrunenv 'cmake/[>=3.21]@'




CMake - usage

add_executable(my_app main.cpp)
target_link_libraries(myapp PUBLIC mylib)




CMake - usage

add_executable(my_app main.cpp)
target_link_libraries(myapp PUBLIC mylib)

find_package(mydependency REQUIRED)
target_link_libraries(mylib PRIVATE mydependency: :mydependency)




CMake - integrating other tools

CMAKE_CXX_CPPCHECK
CMAKE_CXX_CPPLINT
CMAKE_CXX_CLANG_TIDY
CMAKE_CXX_INCLUDE_WHAT_YOU_USE




CMake - integrating other tools

CMAKE_CXX_CPPCHECK
CMAKE_CXX_CPPLINT
CMAKE_CXX_CLANG_TIDY
CMAKE_CXX_INCLUDE_WHAT_YOU_USE
CMAKE_CXX_COMPILER_LAUNCHER




Speeding up Builds




Low hanging CMake fruits

e changing your build system
e building only what's required
e using only required tooling







Ninja

e small build system




Ninja

e small build system
e designed to be used with a build system generator




Ninja

e small build system
e designed to be used with a build system generator
e especially faster for incremental builds




Ninja

small build system

desighed to be used with a build system generator
especially faster for incremental builds

used by Chrome, Android, LLVM




Ninja + CMake: generating

Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)




Ninja + CMake: generating

Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)
2. cmake -G 'Ninja Multi-Config' (CMake 3.17+)




Ninja + CMake: generating

Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)
2. cmake -G 'Ninja Multi-Config' (CMake 3.17+)
3. export CMAKE_GENERATOR=Ninja (CMake 3.15+)




Ninja + CMake: building:

Several ways possible:

1. ninja




Ninja + CMake: building:

Several ways possible:

1. ninja
2. cmake --build .




Building only what's required

Don't:

rmdir build; mkdir build; cd build
cmake -DYADDA=YADDA ..
make -j

Do:

cmake --build . —--target my_app




Avoid unnecessary tooling




Include What You Use

e analyzes what you must include and forward declare




Include What You Use

e analyzes what you must include and forward declare
e can lead to great build speedups




Include What You Use

e analyzes what you must include and forward declare
e can lead to great build speedups
e but analysis has quite an overhead




CCache

https://ccache.dev/



https://ccache.dev/

CCache - features

e much faster recompilation




CCache - features

e much faster recompilation
e compression




CCache - features

e much faster recompilation
e compression
e statistics




CCache - features

much faster recompilation
compression

statistics

silent fallback in unsupported cases




CCache - features

much faster recompilation
compression

statistics

silent fallback in unsupported cases
easy integration




CCache - features

much faster recompilation
compression

statistics

silent fallback in unsupported cases
easy integration

support for C++20's modules




How much does it help?

A lot!

Personal experience: builds shorter by up to 95%




How much does it help - cont'd

ccache.c

Here are the results of building ccache's own ccache.c with -g -02 -Mp and needed -1 flags:

Elapsed time Percent Factor

Without ccache 0.6988 s 100.00 % 1.00 x
ccache 3.7.1 prepr., first time 0.7251s 103.77 % 0.96 x
ccache 3.7.1 prepr., second time 0.0247s 3.53% 28.33x
ccache 3.7.1 direct, first time 0.7268s 104.01% 0.96x
ccache 3.7.1 direct, second time 0.0048s 0.69 % 145.39 x
ccache 3.7.1 depend, first time 0.7102s 10164 % 0.98 x

ccache 3.7.1 depend, second time 0.0051s 0.73 % 137.81x




CCache - supported environment

e works on Linux and macQOS, other Unixes, and Windows
e supports GCC, Clang and NVCC
e MSVC support underway (PR #506)



https://github.com/ccache/ccache/pull/506

CCache - installation

e Windows:
o just use binaries from GitHub

o scoop install ccache

e Others:
o system package manager - usually not the latest version

o brew install ccache
o nix-env -i ccache
o build from sources (CMake)




CCache - usage

e invoke manually

ccache <compiler> <compiler_args>




CCache - usage

e invoke manually
ccache <compiler> <compiler_args>

e invoke via symbolic links masquerading the compilers




CCache - usage

invoke manually
ccache <compiler> <compiler_args>
invoke via symbolic links masquerading the compilers

integrate with build systems




CCache - masquerading compilers

To ensure CCache is used by default:




CCache - masquerading compilers

To ensure CCache is used by default:
1. Run:

cp ccache /Jusr/local/bin/

In ccache /usr/local/bin/gcc
In ccache /usr/local/bin/g++
In ccache /Jusr/local/bin/cc
In ccache /Jusr/local/bin/c++




CCache - masquerading compilers

To ensure CCache is used by default:
1. Run:

cp ccache /Jusr/local/bin/

In ccache /usr/local/bin/gcc
In ccache /usr/local/bin/g++
In ccache /Jusr/local/bin/cc
In ccache /Jusr/local/bin/c++

2. Put /usr/local/bin early in PATH

3. Call your compiler by name, e.g. g++




CCache - integrating with CMake

Available since CMake 3.4




CCache - integrating with CMake

Available since CMake 3.4

—~DCMAKE_CXX_COMPILER_LAUNCHER=ccache




CCache - integrating with CMake

Available since CMake 3.4

—~DCMAKE_CXX_COMPILER_LAUNCHER=ccache

find_program(CCACHE_PROGRAM ccache)

if (CCACHE_PROGRAM)

set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${CCACHE_PROGRAM}")
endif()




CCache - configuration

e many environment variables
e corresponding settings in ccache.conf




CCache - configuration, cont'd

cache size and location

behavior: sloppiness, preprocessing, etc.
compiler specific, e. g. prefix_command
read only mode

debugging and logging




CCache - sharing cache

e possible on same machine and using a network storage




CCache - sharing cache

e possible on same machine and using a network storage
o for locations afar, consider providing their own caches




CCache - sharing cache

e possible on same machine and using a network storage
o for locations afar, consider providing their own caches
e users need to be in same group




CCache - sharing cache

possible on same machine and using a network storage
for locations afar, consider providing their own caches
users need to be in same group

in config, provide:

cache_size = 100G

base_dir = /home/current/user/

cache_dir = /network/storage/path
hash_dir false

temporary_dir = /some/local/dir/like/tmp
umask = 002




CCache - caveats

e unable to cache results from clang-based tools




What else a developer needs?







lcecream

https://github.com/icecc/icecream



https://github.com/icecc/icecream

lcecream - features

e scheduler




lcecream - features

e scheduler
o only uses free resources on machines




lcecream - features

e scheduler
o only uses free resources on machines

o allows good perf on heterogeneous environments




lcecream - features

e scheduler
o only uses free resources on machines

o allows good perf on heterogeneous environments
o allows some machines to be off during compilation




lcecream - features

e scheduler
o only uses free resources on machines

o allows good perf on heterogeneous environments
o allows some machines to be off during compilation
e remote cross compiling




lcecream - features

e scheduler
o only uses free resources on machines

o allows good perf on heterogeneous environments
o allows some machines to be off during compilation
e remote cross compiling
e monitoring




How much does it help?

#RCE Benoit Girard (:BenWa)

_rf- @*§y Comment 20 * 5 years ago

We ran:
$ sudo apt-get install icecc

on about 8 desktop machines in Toronto. Now with 40 to 70 jobs we can get
4:30mins Linux builds compared to about 15-20mins on a single machine.




Monitoring - Sundae

https://github.com/JPEWdev/icecream-sundae



https://github.com/JPEWdev/icecream-sundae

Monitoring - Sundae - cont'd

Netname: ICECREAM

Servers: Total:10 Available:10 Active:10
Total: Remote:294 Local:53

Jobs: Maximum:99 Active:62 Local:11 Pending:1

[

35
31
24
26
Host 7f9d46ea0934991 29
12
31
33
37
10 Host 1T640d6848ebda75 36

=

1
2
3
4
5
6
-
8
9

EC e = I R % o I L I N ¥ DR R = R U
s T ey T s O s Y e Y s T s Y sy T s B
F N W W =W W
= o O 0 0 9 @ 0 & @







lcecream - supported environments

e Linux
e macOS
e FreeBSD

e Cygwin

No native Windows :(




lcecream - installation

e developers recommend using distro's package
o sudo aptinstall icecc

o sudo apt install icecc-scheduler
o sudo aptinstall icecream-sundae
e be sure to run version 1.3.1 or later




lcecream - configuration

e firewall
o TCP: 10245, 8765, 8766

o UDP: 8765
e other defaults should work fine

e persistent connections:
o --scheduler-host for daemon

o --persistent-client-connection for scheduler




Combining CCache and Icecream

e Your ccache.conf file must contain:

prefix_command=1icecc




lcecream without CCache

To ensure Icecream is always used by default, put
/usr/1lib/icecc/bin

early in your PATH.




lcecream without CCache - different
approach

find_program(ICECC_PROGRAM -cecc)

if (ICECC_PROGRAM)
set_property (GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${ICECC_PROGRAM}")

endif ()




|cecream - caveats

e bugs in older versions
e only supports GCC and Clang
e tricky cross-compilation cases are... tricky




Noteworthy alternatives




IncrediBuild

distributed building for Windows and Linux
commercial

able to support Intel compilers

able to distribute tests

uses CCache under the hood

https://www.incredibuild.com/



https://www.incredibuild.com/

sccache

e Mozilla's ccache-like compiler cache

e built-in icecream-style distributed compilation
e supports C, C++, Rust, and NVCC

e on Windows, Linux and macOS

Not production ready yet (current version: 0.2.15)

https://github.com/mozilla/sccache



https://github.com/mozilla/sccache




Portable build environments

@doomhammerng



Portable build environments

How to make sure everyone's playing the same toys?

@doomhammerng



@doomhammerng



VMs

e All the software preinstalled

@doomhammerng



VMs

e All the software preinstalled

e Easy distribution

@doomhammerng




VMs

e All the software preinstalled

e Easy distribution

e May be less than pleasant to use

@doomhammerng




Containers?

@doomhammerng



Containers?

e Oooh, shiny!

@doomhammerng



Containers?

e Oooh, shiny!

e Slicker than VMs!

@doomhammerng



Containers?

e Oooh, shiny!
e Slicker than VMs!

e Application containers and toolchains don't match

@doomhammerng



What else?

@doomhammerng



Nix features

Operates in userland

Deterministic packages and environments

Atomic upgrades

Rollbacks

Build environment management

Multiple versions of packages side-by-side on a single system

Runs on Linux and macOS

@doomhammerng




Functional approach

Installing or upgrading package won't break other packages
Every package is installed in a separate directory
It allows easy rollback

Prevents inconsistent state

@doomhammerng



Good for multi-user environments

e Several users can install packages without superuser privileges

e Different users can have different package versions

@doomhammerng



Projects with direnv

Uses nix-shell.

Automatically sets up development environment whenever you enter a directory.

You can pin the packages version.

@doomhammerng




.envrc

use_nix
env/bin/activate

default.nix

{ pkgs ? dmport <nixpkgs> {} }:

with pkgs; {
gccllEnv = stdenvNoCC.mkDerivation {
name = "gccll-environment";
buildInputs = [ cmake ccache gccll git gnumake dcecream ];
Fs
¥




How Does it Compare to The Rest?

Still not as easy as Homebrew

Getting a working GCC compiler from Git is still tricky
GNU Guix using GNU Scheme (LISP)

... If you love parentheses, you'll love GUIX!

... also works with direnv!

@doomhammerng



Managing Git hooks

@doomhammerng



Managing Git hooks

e There's an app for that!

@doomhammerng



Managing Git hooks

e There's an app for that!

e pre-commit

@doomhammerng



pre-commit

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks

rev: v2.5.0

hooks:
id: check-added-large-files
id: check-byte-order-marker
id: check-case-conflict
id: check-merge-conflict
id: mixed-line-ending
id: no-commit-to-branch
args: [--branch, master]
id: trailing-whitespace

@doomhammerng




pre-commit

#l...]
- repo: https://github.com/pocc/pre-commit-hooks
rev: vl.3.4
hooks:
- 1id: clang-format
args: [--style=Google, -1]
exclude: 3rd-parties/
- 1id: clang-tidy
- repo: https://github.com/iconmaster5326/cmake-format-pre-commit-hoc
rev: v0.6.9
hooks:
- 1d: cmake-format
exclude: 3rd-parties/

@doomhammerng




Packaging

@doomhammerng



@doomhammerng



Conan

e Package manager for C++

@doomhammerng



Conan

e Package manager for C++

e Written in Python

@doomhammerng



Conan

e Package manager for C++
e Written in Python

e like pip/npm/gem but with full toolchain support

@doomhammerng



Conan

Package manager for C++
Written in Python
like pip/npm/gem but with full toolchain support

uses binaries when possible

@doomhammerng




Installing Conan

e brew install ccache
e nix-env -i ccache
e pip install conan

@doomhammerng



Conan - downsides

@doomhammerng



Conan - downsides

e Binaries might be missing for your platform

@doomhammerng



Conan - downsides

e Binaries might be missing for your platform

e Sometimes resorts to system packages in a weird way

@doomhammerng



Conan - downsides

e Binaries might be missing for your platform
e Sometimes resorts to system packages in a weird way

e Still in fast-paced development, things may not be entirely stable

@doomhammerng



Conan - downsides

Binaries might be missing for your platform
Sometimes resorts to system packages in a weird way
Still in fast-paced development, things may not be entirely stable

Creating your own packages requires some skill

@doomhammerng



Conan profile

[settings]

os=Linux
os_build=Linux
arch=x86_64
arch_build=x86_64
compiler=gcc
compiler.version=11
compiler.libcxx=1libstdc++11
build_type=Release
[options]
[build_requires]
[env]

@doomhammerng




Conanfile - old style

[requires]
flac/1.3.3
spdlog/[>=1.4.1]

[generators]
cmake

@doomhammerng



CMakelists.txt - old style

conan_basic_setup (TARGETS)

target_link_libraries(
songcorder

S{CONAN_LIBS}

@doomhammerng



Conanfile

[requires]
ms-gsl/3.1.0

[generators]
CMakeDeps

@doomhammerng




CMakelLists.txt

find_package(ms-gs1l CONFIG REQUIRED)

@doomhammerng



@doomhammerng



CPack

e Generates sources and binary packages

@doomhammerng



CPack

e Generates sources and binary packages

e Could spit out NSIS installers and macOS dmg archives

@doomhammerng




CPack

e Generates sources and binary packages

e Could spit out NSIS installers and macOS dmg archives

e Produces Deb and RPM on supported platforms

@doomhammerng




Applmage / Flatpack

e The new way to package portable Linux apps

@doomhammerng



Applmage

add_custom_target(bundle
COMMAND "${CMAKE_MAKE_PROGRAM}" DESTDIR=AppDir dinstall
COMMAND bash -c
"${PSD}/tools/linuxdeploy.AppImage --appimage-extract"
COMMAND bash -c
"${PSD}/tools/1linuxdeploy-plugin-qt.AppImage --appimage-extract"
COMMAND bash -c
"S{CBD}/squashfs-root/usr/bin/linuxdeploy --appdir AppDir \
—-—output appimage --plugin gt -d ${CSD}/songcorder.desktop \
-1 ${CSD}/src/res/songcorder.svg —-e S<TARGET_FILE:songcorder>"
COMMENT "Build Appimage"
WORKING_DIRECTORY S${CMAKE_BINARY_DIR}
DEPENDS songcorder)




Applmage

add_custom_command (TARGET bundle

POST_BUILD

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}

COMMAND bash -cv
"S{PROJECT_SOURCE_DIR}/tools/build-installer.py \
——appimage Songcorder-*.AppImage -n Songcorder \
-i ${CMAKE_SOURCE_DIR}/src/res/songcorder.png"

COMMENT "Build installer from appimage"

VERBATIM)




Hungry for more?

Check out the book

Featuring:
Software Architecture
with G+ e More on architectural styles

e Designing quality software

Adrian Ostrowski | Piotr Gaczkowski




Questions?




Thank you!

https://github.com/DoomHammer https://github.com/aostrowski

https://doomhammer.info #habana

https://doomhammer.info/talks/meetingcpp2021



https://doomhammer.info/talks/meetingcpp2021
https://github.com/DoomHammer
https://doomhammer.info/
https://github.com/aostrowski

Attributions

Building Site photo by Samuel Regan-Asante on Unsplash
Icecream rainbow photo by Lama Roscu on Unsplash
Sundae image by Gerhard G. from Pixabay

Switch photo by Isabella and Louisa Fischer on Unsplash



https://unsplash.com/@fkaregan?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@lamaroscu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/icecream?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://pixabay.com/users/blende12-201217/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2300531
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2300531
https://unsplash.com/@twinsfisch?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/switch?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

