
Building and Packaging Modern C++

Piotr Gaczkowski

https://github.com/DoomHammer | @doomhammerng

https://doomhammer.info

https://github.com/DoomHammer
https://twitter.com/doomhammerng
https://doomhammer.info/

Adrian Ostrowski

https://github.com/aostrowski | @adr_ostrowski

https://github.com/aostrowski
https://twitter.com/adr_ostrowski

CMake

CMake - installation
system package managers, e. g. apt install cmake

CMake - installation
system package managers, e. g. apt install cmake
brew install cmake

CMake - installation
system package managers, e. g. apt install cmake
brew install cmake
pip install cmake>=3.21

CMake - installation
system package managers, e. g. apt install cmake
brew install cmake
pip install cmake>=3.21
conan install -g virtualrunenv 'cmake/[>=3.21]@'

CMake - usage
add_executable(my_app main.cpp)
target_link_libraries(myapp PUBLIC mylib)

CMake - usage
add_executable(my_app main.cpp)
target_link_libraries(myapp PUBLIC mylib)

find_package(mydependency REQUIRED)
target_link_libraries(mylib PRIVATE mydependency::mydependency)

CMake - integrating other tools
CMAKE_CXX_CPPCHECK
CMAKE_CXX_CPPLINT
CMAKE_CXX_CLANG_TIDY
CMAKE_CXX_INCLUDE_WHAT_YOU_USE

CMake - integrating other tools
CMAKE_CXX_CPPCHECK
CMAKE_CXX_CPPLINT
CMAKE_CXX_CLANG_TIDY
CMAKE_CXX_INCLUDE_WHAT_YOU_USE
CMAKE_CXX_COMPILER_LAUNCHER

Speeding up Builds

Low hanging CMake fruits
changing your build system
building only what's required
using only required tooling

Ninja

Ninja
small build system

Ninja
small build system
designed to be used with a build system generator

Ninja
small build system
designed to be used with a build system generator
especially faster for incremental builds

Ninja
small build system
designed to be used with a build system generator
especially faster for incremental builds
used by Chrome, Android, LLVM

Ninja + CMake: generating
Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)

Ninja + CMake: generating
Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)
2. cmake -G 'Ninja Multi-Config' (CMake 3.17+)

Ninja + CMake: generating
Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)
2. cmake -G 'Ninja Multi-Config' (CMake 3.17+)
3. export CMAKE_GENERATOR=Ninja (CMake 3.15+)

Ninja + CMake: building:
Several ways possible:

1. ninja

Ninja + CMake: building:
Several ways possible:

1. ninja
2. cmake --build .

Building only what's required
Don't:

rmdir build; mkdir build; cd build
cmake -DYADDA=YADDA ..
make -j # or make -j all

Do:

cmake --build . --target my_app

Avoid unnecessary tooling

Include What You Use
analyzes what you must include and forward declare

Include What You Use
analyzes what you must include and forward declare
can lead to great build speedups

Include What You Use
analyzes what you must include and forward declare
can lead to great build speedups
but analysis has quite an overhead

CCache
https://ccache.dev/

https://ccache.dev/

CCache - features
much faster recompilation

CCache - features
much faster recompilation
compression

CCache - features
much faster recompilation
compression
statistics

CCache - features
much faster recompilation
compression
statistics
silent fallback in unsupported cases

CCache - features
much faster recompilation
compression
statistics
silent fallback in unsupported cases
easy integration

CCache - features
much faster recompilation
compression
statistics
silent fallback in unsupported cases
easy integration
support for C++20's modules

How much does it help?
A lot!

Personal experience: builds shorter by up to 95%

How much does it help - cont'd

CCache - supported environment
works on Linux and macOS, other Unixes, and Windows
supports GCC, Clang and NVCC
MSVC support underway (PR #506)

https://github.com/ccache/ccache/pull/506

CCache - installation
Windows:

just use binaries from GitHub
scoop install ccache

Others:
system package manager - usually not the latest version
brew install ccache
nix-env -i ccache
build from sources (CMake)

CCache - usage
invoke manually

ccache <compiler> <compiler_args>

CCache - usage
invoke manually

ccache <compiler> <compiler_args>

invoke via symbolic links masquerading the compilers

CCache - usage
invoke manually

ccache <compiler> <compiler_args>

invoke via symbolic links masquerading the compilers

integrate with build systems

CCache - masquerading compilers
To ensure CCache is used by default:

CCache - masquerading compilers
To ensure CCache is used by default:

1. Run:

cp ccache /usr/local/bin/
ln -s ccache /usr/local/bin/gcc
ln -s ccache /usr/local/bin/g++
ln -s ccache /usr/local/bin/cc
ln -s ccache /usr/local/bin/c++

CCache - masquerading compilers
To ensure CCache is used by default:

1. Run:

cp ccache /usr/local/bin/
ln -s ccache /usr/local/bin/gcc
ln -s ccache /usr/local/bin/g++
ln -s ccache /usr/local/bin/cc
ln -s ccache /usr/local/bin/c++

2. Put /usr/local/bin early in PATH

3. Call your compiler by name, e.g. g++

CCache - integrating with CMake
Available since CMake 3.4

CCache - integrating with CMake
Available since CMake 3.4

-DCMAKE_CXX_COMPILER_LAUNCHER=ccache

CCache - integrating with CMake
Available since CMake 3.4

-DCMAKE_CXX_COMPILER_LAUNCHER=ccache

find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
 set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${CCACHE_PROGRAM}")
endif()

CCache - configuration
many environment variables
corresponding settings in ccache.conf

CCache - configuration, cont'd
cache size and location
behavior: sloppiness, preprocessing, etc.
compiler specific, e. g. prefix_command
read only mode
debugging and logging

CCache - sharing cache
possible on same machine and using a network storage

CCache - sharing cache
possible on same machine and using a network storage
for locations afar, consider providing their own caches

CCache - sharing cache
possible on same machine and using a network storage
for locations afar, consider providing their own caches
users need to be in same group

CCache - sharing cache
possible on same machine and using a network storage
for locations afar, consider providing their own caches
users need to be in same group
in config, provide:

cache_size = 100G
base_dir = /home/current/user/
cache_dir = /network/storage/path
hash_dir = false
temporary_dir = /some/local/dir/like/tmp
umask = 002

CCache - caveats
unable to cache results from clang-based tools

What else a developer needs?

Icecream
https://github.com/icecc/icecream

https://github.com/icecc/icecream

Icecream - features
scheduler

Icecream - features
scheduler

only uses free resources on machines

Icecream - features
scheduler

only uses free resources on machines
allows good perf on heterogeneous environments

Icecream - features
scheduler

only uses free resources on machines
allows good perf on heterogeneous environments
allows some machines to be off during compilation

Icecream - features
scheduler

only uses free resources on machines
allows good perf on heterogeneous environments
allows some machines to be off during compilation

remote cross compiling

Icecream - features
scheduler

only uses free resources on machines
allows good perf on heterogeneous environments
allows some machines to be off during compilation

remote cross compiling
monitoring

How much does it help?

Monitoring - Sundae
https://github.com/JPEWdev/icecream-sundae

https://github.com/JPEWdev/icecream-sundae

Monitoring - Sundae - cont'd

Icecream - supported environments
Linux
macOS
FreeBSD
Cygwin

No native Windows :(

Icecream - installation
developers recommend using distro's package

sudo apt install icecc
sudo apt install icecc-scheduler
sudo apt install icecream-sundae

be sure to run version 1.3.1 or later

Icecream - configuration
firewall

TCP: 10245, 8765, 8766
UDP: 8765

other defaults should work fine
persistent connections:

--scheduler-host for daemon
--persistent-client-connection for scheduler

Combining CCache and Icecream
Your ccache.conf file must contain:

prefix_command=icecc

Icecream without CCache
To ensure Icecream is always used by default, put

/usr/lib/icecc/bin

early in your PATH.

Icecream without CCache - different
approach
find_program(ICECC_PROGRAM icecc)
if(ICECC_PROGRAM)
 set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${ICECC_PROGRAM}")
endif()

Icecream - caveats
bugs in older versions
only supports GCC and Clang
tricky cross-compilation cases are... tricky

Noteworthy alternatives

IncrediBuild
distributed building for Windows and Linux
commercial
able to support Intel compilers
able to distribute tests
uses CCache under the hood

https://www.incredibuild.com/

https://www.incredibuild.com/

sccache
Mozilla's ccache-like compiler cache
built-in icecream-style distributed compilation
supports C, C++, Rust, and NVCC
on Windows, Linux and macOS

Not production ready yet (current version: 0.2.15)

https://github.com/mozilla/sccache

https://github.com/mozilla/sccache

Portable build environments

@doomhammerng

Portable build environments
How to make sure everyone's playing the same toys?

@doomhammerng

VMs

@doomhammerng

VMs
All the software preinstalled

@doomhammerng

VMs
All the software preinstalled

Easy distribution

@doomhammerng

VMs
All the software preinstalled

Easy distribution

May be less than pleasant to use

@doomhammerng

Containers?

@doomhammerng

Containers?
Oooh, shiny!

@doomhammerng

Containers?
Oooh, shiny!

Slicker than VMs!

@doomhammerng

Containers?
Oooh, shiny!

Slicker than VMs!

Application containers and toolchains don't match

@doomhammerng

What else?

@doomhammerng

Nix features
Operates in userland

Deterministic packages and environments

Atomic upgrades

Rollbacks

Build environment management

Multiple versions of packages side-by-side on a single system

Runs on Linux and macOS

@doomhammerng

Functional approach
Installing or upgrading package won't break other packages

Every package is installed in a separate directory

It allows easy rollback

Prevents inconsistent state

@doomhammerng

Good for multi-user environments
Several users can install packages without superuser privileges

Different users can have different package versions

@doomhammerng

Projects with direnv
Uses nix-shell.

Automatically sets up development environment whenever you enter a directory.

You can pin the packages version.

@doomhammerng

.envrc

use_nix
. env/bin/activate

default.nix

{ pkgs ? import <nixpkgs> {} }:

with pkgs; {
 gcc11Env = stdenvNoCC.mkDerivation {
 name = "gcc11-environment";
 buildInputs = [cmake ccache gcc11 git gnumake icecream];
 };
}

How Does it Compare to The Rest?
Still not as easy as Homebrew

Getting a working GCC compiler from Git is still tricky

GNU Guix using GNU Scheme (LISP)

... if you love parentheses, you'll love GUIX!

... also works with direnv!

@doomhammerng

Managing Git hooks

@doomhammerng

Managing Git hooks
There's an app for that!

@doomhammerng

Managing Git hooks
There's an app for that!

pre-commit

@doomhammerng

pre-commit
repos:
 - repo: https://github.com/pre-commit/pre-commit-hooks
 rev: v2.5.0
 hooks:
 - id: check-added-large-files
 - id: check-byte-order-marker
 - id: check-case-conflict
 - id: check-merge-conflict
 - id: mixed-line-ending
 - id: no-commit-to-branch
 args: [--branch, master]
 - id: trailing-whitespace

@doomhammerng

pre-commit
#[...]
 - repo: https://github.com/pocc/pre-commit-hooks
 rev: v1.3.4
 hooks:
 - id: clang-format
 args: [--style=Google, -i]
 exclude: 3rd-parties/
 - id: clang-tidy
 - repo: https://github.com/iconmaster5326/cmake-format-pre-commit-hoo
 rev: v0.6.9
 hooks:
 - id: cmake-format
 exclude: 3rd-parties/

@doomhammerng

Packaging

@doomhammerng

Conan

@doomhammerng

Conan
Package manager for C++

@doomhammerng

Conan
Package manager for C++

Written in Python

@doomhammerng

Conan
Package manager for C++

Written in Python

like pip/npm/gem but with full toolchain support

@doomhammerng

Conan
Package manager for C++

Written in Python

like pip/npm/gem but with full toolchain support

uses binaries when possible

@doomhammerng

Installing Conan
brew install ccache
nix-env -i ccache
pip install conan

@doomhammerng

Conan - downsides

@doomhammerng

Conan - downsides
Binaries might be missing for your platform

@doomhammerng

Conan - downsides
Binaries might be missing for your platform

Sometimes resorts to system packages in a weird way

@doomhammerng

Conan - downsides
Binaries might be missing for your platform

Sometimes resorts to system packages in a weird way

Still in fast-paced development, things may not be entirely stable

@doomhammerng

Conan - downsides
Binaries might be missing for your platform

Sometimes resorts to system packages in a weird way

Still in fast-paced development, things may not be entirely stable

Creating your own packages requires some skill

@doomhammerng

Conan profile
[settings]
os=Linux
os_build=Linux
arch=x86_64
arch_build=x86_64
compiler=gcc
compiler.version=11
compiler.libcxx=libstdc++11
build_type=Release
[options]
[build_requires]
[env]

@doomhammerng

Conanfile - old style
[requires]
flac/1.3.3
spdlog/[>=1.4.1]

[generators]
cmake

@doomhammerng

CMakeLists.txt - old style
#[...]
conan_basic_setup(TARGETS)
#[...]
target_link_libraries(
 songcorder
 #[...]
 ${CONAN_LIBS}
 #[...]
)

@doomhammerng

Conanfile
[requires]
ms-gsl/3.1.0

[generators]
CMakeDeps

@doomhammerng

CMakeLists.txt
find_package(ms-gsl CONFIG REQUIRED)

@doomhammerng

CPack

@doomhammerng

CPack
Generates sources and binary packages

@doomhammerng

CPack
Generates sources and binary packages

Could spit out NSIS installers and macOS dmg archives

@doomhammerng

CPack
Generates sources and binary packages

Could spit out NSIS installers and macOS dmg archives

Produces Deb and RPM on supported platforms

@doomhammerng

AppImage / Flatpack
The new way to package portable Linux apps

@doomhammerng

AppImage
 add_custom_target(bundle
 COMMAND "${CMAKE_MAKE_PROGRAM}" DESTDIR=AppDir install
 COMMAND bash -c
 "${PSD}/tools/linuxdeploy.AppImage --appimage-extract"
 COMMAND bash -c
 "${PSD}/tools/linuxdeploy-plugin-qt.AppImage --appimage-extract"
 COMMAND bash -c
 "${CBD}/squashfs-root/usr/bin/linuxdeploy --appdir AppDir \
 --output appimage --plugin qt -d ${CSD}/songcorder.desktop \
 -i ${CSD}/src/res/songcorder.svg -e $<TARGET_FILE:songcorder>"
 COMMENT "Build Appimage"
 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
 DEPENDS songcorder)

AppImage
 add_custom_command(TARGET bundle
 POST_BUILD
 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
 COMMAND bash -cv
 "${PROJECT_SOURCE_DIR}/tools/build-installer.py \
 --appimage Songcorder-*.AppImage -n Songcorder \
 -i ${CMAKE_SOURCE_DIR}/src/res/songcorder.png"
 COMMENT "Build installer from appimage"
 VERBATIM)

Hungry for more?
Check out the book

Featuring:

More on architectural styles
Designing quality software

Questions?

Thank you!

https://doomhammer.info/talks/meetingcpp2021

https://github.com/DoomHammer

https://doomhammer.info

https://github.com/aostrowski

https://doomhammer.info/talks/meetingcpp2021
https://github.com/DoomHammer
https://doomhammer.info/
https://github.com/aostrowski

Attributions
Building Site photo by Samuel Regan-Asante on Unsplash

Icecream rainbow photo by Lama Roscu on Unsplash

Sundae image by Gerhard G. from Pixabay

Switch photo by Isabella and Louisa Fischer on Unsplash

https://unsplash.com/@fkaregan?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@lamaroscu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/icecream?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://pixabay.com/users/blende12-201217/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2300531
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2300531
https://unsplash.com/@twinsfisch?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/switch?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

