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CMake - installation
system package managers, e. g. apt install cmake
brew install cmake
pip install cmake>=3.21
conan install -g virtualrunenv 'cmake/[>=3.21]@'
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add_executable(my_app main.cpp)
target_link_libraries(myapp PUBLIC mylib)



CMake - usage
add_executable(my_app main.cpp)
target_link_libraries(myapp PUBLIC mylib)

find_package(mydependency REQUIRED)
target_link_libraries(mylib PRIVATE mydependency::mydependency)



CMake - integrating other tools
CMAKE_CXX_CPPCHECK
CMAKE_CXX_CPPLINT
CMAKE_CXX_CLANG_TIDY
CMAKE_CXX_INCLUDE_WHAT_YOU_USE



CMake - integrating other tools
CMAKE_CXX_CPPCHECK
CMAKE_CXX_CPPLINT
CMAKE_CXX_CLANG_TIDY
CMAKE_CXX_INCLUDE_WHAT_YOU_USE
CMAKE_CXX_COMPILER_LAUNCHER



Speeding up Builds



Low hanging CMake fruits
changing your build system
building only what's required
using only required tooling



Ninja
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Ninja
small build system
designed to be used with a build system generator
especially faster for incremental builds
used by Chrome, Android, LLVM
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Several ways possible:
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Ninja + CMake: generating
Several ways possible:

1. cmake -G Ninja (mature since CMake 3.3)
2. cmake -G 'Ninja Multi-Config' (CMake 3.17+)
3. export CMAKE_GENERATOR=Ninja (CMake 3.15+)



Ninja + CMake: building:
Several ways possible:

1. ninja



Ninja + CMake: building:
Several ways possible:

1. ninja
2. cmake --build .



Building only what's required
Don't:

rmdir build; mkdir build; cd build
cmake -DYADDA=YADDA ..
make -j # or make -j all

Do:

cmake --build . --target my_app



Avoid unnecessary tooling



Include What You Use
analyzes what you must include and forward declare
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Include What You Use
analyzes what you must include and forward declare
can lead to great build speedups
but analysis has quite an overhead



CCache
https://ccache.dev/
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CCache - features
much faster recompilation
compression
statistics
silent fallback in unsupported cases
easy integration
support for C++20's modules



How much does it help?
A lot!

Personal experience: builds shorter by up to 95%



How much does it help - cont'd



CCache - supported environment
works on Linux and macOS, other Unixes, and Windows
supports GCC, Clang and NVCC
MSVC support underway (PR #506)

https://github.com/ccache/ccache/pull/506


CCache - installation
Windows:

just use binaries from GitHub
scoop install ccache

Others:
system package manager - usually not the latest version
brew install ccache
nix-env -i ccache
build from sources (CMake)



CCache - usage
invoke manually

ccache <compiler> <compiler_args>
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CCache - usage
invoke manually

ccache <compiler> <compiler_args>

invoke via symbolic links masquerading the compilers

integrate with build systems
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1. Run:

cp ccache /usr/local/bin/
ln -s ccache /usr/local/bin/gcc
ln -s ccache /usr/local/bin/g++
ln -s ccache /usr/local/bin/cc
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CCache - masquerading compilers
To ensure CCache is used by default:

1. Run:

cp ccache /usr/local/bin/
ln -s ccache /usr/local/bin/gcc
ln -s ccache /usr/local/bin/g++
ln -s ccache /usr/local/bin/cc
ln -s ccache /usr/local/bin/c++

2. Put /usr/local/bin early in PATH

3. Call your compiler by name, e.g. g++
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CCache - integrating with CMake
Available since CMake 3.4

-DCMAKE_CXX_COMPILER_LAUNCHER=ccache

find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
 set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${CCACHE_PROGRAM}")
endif()



CCache - configuration
many environment variables
corresponding settings in ccache.conf



CCache - configuration, cont'd
cache size and location
behavior: sloppiness, preprocessing, etc.
compiler specific, e. g. prefix_command
read only mode
debugging and logging



CCache - sharing cache
possible on same machine and using a network storage
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CCache - sharing cache
possible on same machine and using a network storage
for locations afar, consider providing their own caches
users need to be in same group
in config, provide:

cache_size = 100G
base_dir = /home/current/user/
cache_dir = /network/storage/path
hash_dir = false
temporary_dir = /some/local/dir/like/tmp
umask = 002



CCache - caveats
unable to cache results from clang-based tools



What else a developer needs?





Icecream
https://github.com/icecc/icecream

https://github.com/icecc/icecream
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Icecream - features
scheduler

only uses free resources on machines
allows good perf on heterogeneous environments
allows some machines to be off during compilation

remote cross compiling
monitoring



How much does it help?



Monitoring - Sundae
https://github.com/JPEWdev/icecream-sundae

https://github.com/JPEWdev/icecream-sundae


Monitoring - Sundae - cont'd





Icecream - supported environments
Linux
macOS
FreeBSD
Cygwin

No native Windows :(



Icecream - installation
developers recommend using distro's package

sudo apt install icecc
sudo apt install icecc-scheduler
sudo apt install icecream-sundae

be sure to run version 1.3.1 or later



Icecream - configuration
firewall

TCP: 10245, 8765, 8766
UDP: 8765

other defaults should work fine
persistent connections:

--scheduler-host for daemon
--persistent-client-connection for scheduler



Combining CCache and Icecream
Your ccache.conf file must contain:

prefix_command=icecc



Icecream without CCache
To ensure Icecream is always used by default, put

/usr/lib/icecc/bin

early in your PATH.



Icecream without CCache - different
approach
find_program(ICECC_PROGRAM icecc)
if(ICECC_PROGRAM)
  set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${ICECC_PROGRAM}")
endif()



Icecream - caveats
bugs in older versions
only supports GCC and Clang
tricky cross-compilation cases are... tricky



Noteworthy alternatives



IncrediBuild
distributed building for Windows and Linux
commercial
able to support Intel compilers
able to distribute tests
uses CCache under the hood

https://www.incredibuild.com/

https://www.incredibuild.com/


sccache
Mozilla's ccache-like compiler cache
built-in icecream-style distributed compilation
supports C, C++, Rust, and NVCC
on Windows, Linux and macOS

Not production ready yet (current version: 0.2.15)

https://github.com/mozilla/sccache

https://github.com/mozilla/sccache




Portable build environments

@doomhammerng



Portable build environments
How to make sure everyone's playing the same toys?
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VMs
All the software preinstalled
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Easy distribution
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VMs
All the software preinstalled

Easy distribution

May be less than pleasant to use
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Containers?
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Containers?
Oooh, shiny!

Slicker than VMs!

Application containers and toolchains don't match

@doomhammerng



What else?
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Nix features
Operates in userland

Deterministic packages and environments

Atomic upgrades

Rollbacks

Build environment management

Multiple versions of packages side-by-side on a single system

Runs on Linux and macOS

@doomhammerng



Functional approach
Installing or upgrading package won't break other packages

Every package is installed in a separate directory

It allows easy rollback

Prevents inconsistent state

@doomhammerng



Good for multi-user environments
Several users can install packages without superuser privileges

Different users can have different package versions

@doomhammerng



Projects with direnv
Uses nix-shell.

Automatically sets up development environment whenever you enter a directory.

You can pin the packages version.

@doomhammerng



.envrc

use_nix
. env/bin/activate

default.nix

{ pkgs ? import <nixpkgs> {} }:

with pkgs; {
  gcc11Env = stdenvNoCC.mkDerivation {
    name = "gcc11-environment";
    buildInputs = [ cmake ccache gcc11 git gnumake icecream ];
  };
}



How Does it Compare to The Rest?
Still not as easy as Homebrew

Getting a working GCC compiler from Git is still tricky

GNU Guix using GNU Scheme (LISP)

... if you love parentheses, you'll love GUIX!

... also works with direnv!

@doomhammerng



Managing Git hooks
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There's an app for that!
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Managing Git hooks
There's an app for that!

pre-commit
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pre-commit
repos:
  - repo: https://github.com/pre-commit/pre-commit-hooks
    rev: v2.5.0
    hooks:
      - id: check-added-large-files
      - id: check-byte-order-marker
      - id: check-case-conflict
      - id: check-merge-conflict
      - id: mixed-line-ending
      - id: no-commit-to-branch
        args: [--branch, master]
      - id: trailing-whitespace

@doomhammerng



pre-commit
#[...]
  - repo: https://github.com/pocc/pre-commit-hooks
    rev: v1.3.4
    hooks:
      - id: clang-format
        args: [--style=Google, -i]
        exclude: 3rd-parties/
      - id: clang-tidy
  - repo: https://github.com/iconmaster5326/cmake-format-pre-commit-hoo
    rev: v0.6.9
    hooks:
      - id: cmake-format
        exclude: 3rd-parties/

@doomhammerng



Packaging
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Conan
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Conan
Package manager for C++
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Conan
Package manager for C++

Written in Python

like pip/npm/gem but with full toolchain support
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Conan
Package manager for C++

Written in Python

like pip/npm/gem but with full toolchain support

uses binaries when possible

@doomhammerng



Installing Conan
brew install ccache
nix-env -i ccache
pip install conan
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Conan - downsides
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Conan - downsides
Binaries might be missing for your platform

Sometimes resorts to system packages in a weird way

Still in fast-paced development, things may not be entirely stable

Creating your own packages requires some skill

@doomhammerng



Conan profile
[settings]
os=Linux
os_build=Linux
arch=x86_64
arch_build=x86_64
compiler=gcc
compiler.version=11
compiler.libcxx=libstdc++11
build_type=Release
[options]
[build_requires]
[env]

@doomhammerng



Conanfile - old style
[requires]
flac/1.3.3
spdlog/[>=1.4.1]

[generators]
cmake

@doomhammerng



CMakeLists.txt - old style
#[...]
conan_basic_setup(TARGETS)
#[...]
target_link_libraries(
  songcorder
  #[...]
  ${CONAN_LIBS}
  #[...]
)

@doomhammerng



Conanfile
[requires]
ms-gsl/3.1.0

[generators]
CMakeDeps

@doomhammerng



CMakeLists.txt
find_package(ms-gsl CONFIG REQUIRED)
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CPack
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CPack
Generates sources and binary packages
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CPack
Generates sources and binary packages

Could spit out NSIS installers and macOS dmg archives
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CPack
Generates sources and binary packages

Could spit out NSIS installers and macOS dmg archives

Produces Deb and RPM on supported platforms

@doomhammerng



AppImage / Flatpack
The new way to package portable Linux apps
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AppImage
  add_custom_target(bundle
    COMMAND "${CMAKE_MAKE_PROGRAM}" DESTDIR=AppDir install
    COMMAND bash -c
      "${PSD}/tools/linuxdeploy.AppImage --appimage-extract"
    COMMAND bash -c
      "${PSD}/tools/linuxdeploy-plugin-qt.AppImage --appimage-extract"
    COMMAND bash -c
      "${CBD}/squashfs-root/usr/bin/linuxdeploy --appdir AppDir \
      --output appimage --plugin qt -d ${CSD}/songcorder.desktop \
      -i ${CSD}/src/res/songcorder.svg -e $<TARGET_FILE:songcorder>"
    COMMENT "Build Appimage"
    WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
    DEPENDS songcorder)



AppImage
  add_custom_command(TARGET bundle
    POST_BUILD
    WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
    COMMAND bash -cv
      "${PROJECT_SOURCE_DIR}/tools/build-installer.py \
      --appimage Songcorder-*.AppImage -n Songcorder \
      -i ${CMAKE_SOURCE_DIR}/src/res/songcorder.png"
    COMMENT "Build installer from appimage"
    VERBATIM)



Hungry for more?
Check out the book

Featuring:

More on architectural styles
Designing quality software



Questions?



Thank you!
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